头像

苗世迪 教授

计算机科学与技术学院计算机科学与技术

学位: 博士

毕业院校: 哈尔滨理工大学

邮件: msdking@aliyun.com

办公地点: 新主楼D801

电话: 13796092201

出生年月: 1979-09-01 00:00:00.0

个人简历


   苗世迪,哈尔滨理工大学计算机科学与技术学院,教授,博士后,硕士研究生导师,教育部学位中心评审专家,黑龙江省自然科学基金评审专家,中国计算机学会( CCF)会员,黑龙江省计算机学会智慧医疗专业委员会执行委员,Frontiers in Bioengineering and Biotechnology,上海交通大学学报(英文版)等期刊审稿专家。主持及主要参与国家级、省部级项目20余项,出版学术专著2部,申请发明专利10余项,以第一作者/通讯作者在Top期刊、CCF推荐高水平期刊及领域内顶级国际会议等发表学术论文40余篇,累计影响因子220.08。主要研究方向为医学大数据分析,医学影像处理,癌症预测建模。以哈尔滨医科大学附属肿瘤医院为主中心,开展基于医学影像分析的癌症预测多中心研究。


教育经历

哈尔滨理工大学,博士,博士后。

工作经历

哈尔滨理工大学计算机科学与技术学院,教授


研究方向

人工智能:

机器学习,深度学习,数据挖掘,机器视觉,统计学

智慧医疗:

临床病历数据挖掘,医学影像分析,癌症预测建模,疾病关联性分析


承担项目

教学工作

招生信息

已指导硕士研究生28人,毕业14人,毕业生大部分在电子科技大学、大连理工大学等985院校攻读博士,部分在高校、京东、阿里巴巴、中国银行、中国建行等从事人工智能相关行业。

每年拟招收硕士研究生(学硕及专硕)3-5名。

课题组与三甲医院长期合作研究,欢迎对智慧医疗方向感兴趣的优秀学生加入!

如果有继续攻读博士研究生的远大志向,加入我课题组是个非常正确的选择!

对你的期望:端正的态度,清澈的思想,良好的情商。

有python和统计学基础、英语水平高者优先。

专利成果

出版著作

发表论文

近三年以第一作者发表的SCI论文

1.      Shidi Miao*, Yuyang Jiang, Wenjuan Huang, et al. SCLResNet and DSAF: A self-supervised contrastive learning and deep self-attention fusion-based multimodal network for predicting central lymph node metastasis in papillary thyroid carcinoma[J]. Artificial Intelligence In Medicine, 2025, 170:103280.(中科院2TOPIF 6.2

2.      Shidi Miao*, Mengzhuo Sun, Beibei Zhang, et al. Multimodal deep learning: tumor and visceral fat impact on colorectal cancer occult peritoneal metastasis[J]. European Radiology, 2025: 1-11.(中科院2TOPIF 4.7

3.      Shidi Miao*, Qifan Xuan, Wenjuan Huang, et al. Multi-region nomogram for predicting central lymph node metastasis in papillary thyroid carcinoma using multimodal imaging: A multicenter study[J]. Computer Methods and Programs in Biomedicine, 2025, 261: 108608.(中科院2TOPIF 4.8

4.      Shidi Miao*, Mengzhuo Sun, Xuemeng Li, et al. Deep Learning-Based Prediction of Microvascular Invasion and Survival Outcomes in Hepatocellular Carcinoma Using Dual-phase CT Imaging of Tumors and Lesser Omental Adipose: A Multicenter Study[J]. Academic Radiology, 2025, 32(10):5789-5801. (中科院2区,IF 3.9

5.      Shidi Miao*, Qi Dong, Le Liu, et al. Dual biomarkers CT-based deep learning model incorporating intrathoracic fat for discriminating benign and malignant pulmonary nodules in multi-center cohorts[J]. Physica Medica, 2025, 129: 104877.(中科院3区,IF 2.7

6.      Shidi Miao*, Yuyang Jiang, Shikai Mu, et al. A Deep Learning-Based Multi-perspective Pulmonary Nodule Classification Incorporating Mediastinal Fat: A Multicenter Study[J]. Journal of Medical and Biological Engineering, 2025, 45(2): 285-297.(中科院4区,IF 1.7

7.      Shidi Miao*, Qifan Xuan, Qingchun Jia, et al. Deep learning-based CT image for pulmonary nodule classification with intrathoracic fat: A multicenter study[J]. Biomedical Signal Processing and Control, 2025, 100: 106938.(中科院2区,IF 4.9

8.      Shidi Miao*, Qifan Xuan, Hanbing Xie, et al. An Integrated Nomogram Combining Deep Learning and Radiomics for Predicting Malignancy of Pulmonary Nodules Using CTDerived Nodules and Adipose Tissue: A Multicenter Study[J]. Cancer Medicine, 2024, 13(21): e70372.(中科院3区,IF 3.1

9.      Shidi Miao*, Haobo Jia, Wenjuan Huang, et al. Subcutaneous fat predicts bone metastasis in breast cancer: A novel multimodality-based deep learning model[J]. Cancer Biomarkers, 2024, 39(3): 171-185.(中科院4区,IF 1.9

10.   Shidi Miao*, Yunfei An, Pingping Liu, et al. Pectoralis muscle predicts distant metastases in breast cancer by deep learning radiomics[J]. Acta Radiologica, 2023, 64(9): 2561-2569.(中科院4区,IF 1.1

11.Shidi Miao*, Haobo Jia, Ke Cheng, et al. Deep learning radiomics under multimodality explore association between muscle/fat and metastasis and survival in breast cancer patients[J]. Briefings in bioinformatics, 2022, 23(6): bbac432.(中科院1TOPIF 7.7


荣誉称号

相关教师